Extreme accumulation of nucleotides in simulated hydrothermal pore systems.
نویسندگان
چکیده
We simulate molecular transport in elongated hydrothermal pore systems influenced by a thermal gradient. We find extreme accumulation of molecules in a wide variety of plugged pores. The mechanism is able to provide highly concentrated single nucleotides, suitable for operations of an RNA world at the origin of life. It is driven solely by the thermal gradient across a pore. On the one hand, the fluid is shuttled by thermal convection along the pore, whereas on the other hand, the molecules drift across the pore, driven by thermodiffusion. As a result, millimeter-sized pores accumulate even single nucleotides more than 10(8)-fold into micrometer-sized regions. The enhanced concentration of molecules is found in the bulk water near the closed bottom end of the pore. Because the accumulation depends exponentially on the pore length and temperature difference, it is considerably robust with respect to changes in the cleft geometry and the molecular dimensions. Whereas thin pores can concentrate only long polynucleotides, thicker pores accumulate short and long polynucleotides equally well and allow various molecular compositions. This setting also provides a temperature oscillation, shown previously to exponentially replicate DNA in the protein-assisted PCR. Our results indicate that, for life to evolve, complicated active membrane transport is not required for the initial steps. We find that interlinked mineral pores in a thermal gradient provide a compelling high-concentration starting point for the molecular evolution of life.
منابع مشابه
Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases.
Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007)Proc Natl Acad Sci USA104(22):93...
متن کاملApplication of Hydrothermal and Non-Hydrothermal TiO2 Nanoporous Materials as New Adsorbents for Removal of Heavy Metal Ions from Aqueous System
Hydrothermal and non-hydrothermal spherical TiO2 nanoporous with crystalline framework were prepared by sol-gel method. The Crystalline structures, morphologies and surface texturing of materials were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms. The Hydrothermal spherical TiO2 nanoporous was found to have a narrow and strong p...
متن کاملHeuristic Approach to Understanding the Accumulation Process in Hydrothermal Pores
One of the central questions of humankind is: which chemical and physical conditions are necessary to make life possible? In this “origin-of-life” context, formamide plays an important role, because it has been demonstrated that prebiotic molecules can be synthesized from concentrated formamide solutions. Recently, it could be shown, using finite-element calculations combining thermophoresis an...
متن کاملBismuth Pyromangenate: Hydrothermal and Solid State Synthesis, Characterization and Optical Properties
Bi2Mn2O7 nano-powders were synthesized via a stoichiometric 1:1 Bi:Mn molar ratio hydrothermal method at 180 °C for 48 h in a 1M NaOH aqueous solution; and solid state method, using Bi(NO3)3.5H2O and MnO2 as raw materials. The synthesized materials were characterized by powder X-ray diffraction (PXRD) technique. Also, the rietveld analysis was done in FullProf in profile matching mode. It was f...
متن کاملThe Effect of Chloride Ions Concentration on the Electrochemical Behavior of AISI 410 Stainless Steels in Simulated Concrete Pore Solution
The effect of chloride ions concentration on the electrochemical behavior of AISI 410 stainless steel in the simulated concrete pore (0.1 M NaOH + 0.1 M KOH) solution was investigated by various electrochemical methods such as Potentiodynamic polarization, Mott–Schottky analysis and electrochemical impedance spectroscopy (EIS). Potentiodynamic polarization curves revealed that increasing chlori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 22 شماره
صفحات -
تاریخ انتشار 2007